IntvDOS

Version 1.0

Users Manual

John Dullea

December, 2000

johnpcae@yahoo.com

Contents

50 For users of PCAE

1 What is IntvDOS?
6
System Requirements
6
Features
6
Emulation Speed
7
2 Setting It Up
8
2 Setting It Up
8
Installing the Software
8
Setting Up Sound Support
8
Note for Windows 98 users
8
Setting up Gravis GrIP support
10
Microsoft SideWinder support
10
Intv2PC Hand Controller Interface support
11
Logitech Digital Controller support
11
Note for Windows Users
11
3 Playing Games
12
The Command Line
12
The Main Menu
12
The Configuration Popup Menu
12
The Preferences Popup Menu
13
Menu hot keys
13
Setting Custom Colors
13
The Game Profile File
13
When the Game Is Running
14
ECS Keyboard Support
15
ECS Cassette Support
15
ECS Printer Support
15
Importing a Text-File ECS Basic Program
16
What are Interfaces?
16
Using Joysticks With IntvDOS
17
Using the Keyboard With IntvDOS
17
Using Intv2PC Hand Controller Interfaces With IntvDOS
17
Slowing Down the Emulator For Faster PC’s
17
Configuring the Emulator’s Sound Output
18
Changing the Main Screen Resolution
18
4 Development Tools
19
Debugger Layout
20
Entering one or more words of data
20
Changing a CP1600 register’s contents
20
Entering a CP1600 instruction
21
Saving to Disk
21
Breaking On an Equation
21
5 SideWinder Support
23
LEARN.EXE: A Helping Hand
24
6 Troubleshooting
26
None of my games run
26
My games run, but I don’t hear any voice for Intellivoice games
26
The computer hangs (or the emulator crashes) when the emulator is run
26
The emulator runs VERY slowly
27
The emulator runs more slowly when I use joysticks than when I use the keyboard
27
The emulator runs, but there is no sound
27
The emulator runs too fast; games are unplayable
28
The cursor is uncontrollable from the main menu; it keeps moving by itself
28
The menu doesn’t show any games to run
28
When I try to run the program I get a “Runtime error” message.
28
The emulator works on one computer, but one of the above problems arises when I copy it to another machine
29
When I try to run a certain game, I either get a black screen, garbage on the screen, or it exits immediately
29
I’m having trouble calibrating my joystick(s)
29
One of the joystick buttons doesn’t work, or hitting a joystick button causes more than one thing to happen
29
When I run IntvDOS, I get an error like “EMM386: Unsupported DMA mode. Press Enter to reboot”
29
I get an error message saying that a file is missing
30
My Gravis GrIP controller doesn’t work or isn’t detected
30
My Microsoft SideWinder controller isn’t detected
30
I chose a VESA mode and I now get a blank screen
30
When I go to change the main screen mode, I don’t see any VESA modes available
30
I want to use a 640-pixel-wide VESA mode but IntvDOS won’t let me
31
I want to use a really high-resolution screen mode that I know my card has, but it isn’t listed
31
Sound is garbled under Windows 95 or 98
31
I have two Intv2PC hand controller interfaces and I want to try some four-player games, but I can’t find them
31
7 Acknowledgements
32
8 Disclaimer
34

0 For users of PCAE

If you are familiar with PCAE, the PC Atari emulator, then you should be able to skim most of this document. Many of IntvDOS’ features and internals are based on PCAE, and the emulator is set up in exactly the same way. Major differences from PCAE include the following:

· IntvDOS is an Intellivision emulator, of course!

· Some changes and enhancements to the integrated debugger, due to differences between Atari 2600 and Intellivision platforms.

· IntvDOS does not support tweaked 160x200x256 screen modes.

· The F8 key (profile management) in PCAE is not available in IntvDOS.

· Somewhat different format of the INTVDOS.PRO file.

· IntvDOS supports a tweaked 320x204x256 screen mode that shows a bit more of the Intellivision screen border.

· IntvDOS only supports an optional path as a command-line argument.

· IntvDOS is not a standalone emulator—it REQUIRES Carl Mueller’s IntvPC emulator from the Intellivision Lives! CD (and other file(s) for IntelliVoice emulation).

1 What is IntvDOS?

IntvDOS is an MS-DOS program designed to emulate the famous Mattel Intellivision on PC’s compatible with the Intel 80486 CPU or better. It accomplishes this with an emulation engine that is written almost entirely in assembly language, with extra features written in Borland Pascal 7.0 for DOS.

System Requirements

OS:
MS-DOS, though it will run from within a Windows DOS prompt.

CPU:
Intel 80486 or greater, for the BSWAP instruction (though a Pentium is highly recommended for performance purposes)

RAM:
540K free low DOS memory (though 590K or greater is strongly recommended

Other:
A 4-button joystick is strongly recommended, ESPECIALLY a Gravis GamePad or Gravis GrIP controller (e.g. Gravis Xterminator). Two (or more) joysticks are strongly recommended for multi-player games.

Sound:
A SoundBlaster or 100% compatible sound card is required for sound support utilizing DSP versions 2.00 or greater.

Features

· Very fast emulation due to the Pentium-optimized assembly implementation

· Full collision checking

· Emulates the Entertainment Computer System and up to four controllers

· Support for two joysticks (four-button joysticks can control select, reset, and both players' fire buttons in all games)

· Built-in menu allows easy selection of games

· Support for a game profile file that contains all the cartridge types and memory settings for every game in your library

· On-line help is available in the menu system, integrated debugger, and while playing games

· Built in interactive debugger

· Emulation speed can be slowed down to a user-selectable number of frames per second for especially fast computers

· Ability to capture the screen to Windows .BMP files

· If a file is missing or there are no game files in the target directory, the emulator exits gracefully and displays an error message

· In the debugger, hitting the “—“ (minus) key toggles display of numbers showing the positions of the eight STIC sprites.

· Main game menu can be configured to display filename and extension, filename only, or real game title

· Games can be highlighted by game type, alphabetically, or by alternating rows

· Game menu colors can be changed for alternating modes

· Main game screen can be displayed in 80x25 text mode, 80x30 text mode, or high-resolution VESA graphics modes

· Debugger supports breakpoint on symbolic equation

· Debugger allows entering a CP1600 instruction by name into emulated memory

· Emulator settings moved to industry-standard .INI file

· Completely new controller support allowing mouse, keyboard, and joystick functions to be remapped

· Fully re-mappable Gravis GrIP controller support (requires Gravis DOS driver—see chapter 2)

· Fully re-mappable Microsoft SideWinder controller support—can be expanded to support future SideWinder controllers

· Experimental program to assist in detecting new SideWinder controller packet structures

· Improved joystick calibration routine that should be more friendly to “jittery” joysticks

· Thrustmaster FCS, CH Flightstick Pro, and some multi-button gamepads supported (all but the FCS are untested)

· Quicksave/quickload game save states

· Ability to also load a quicksave game state by name, that is type in a filename

· Import ECS Basic programs as text file (emulator “types in” the file)

· ECS cassette support (program is either loaded from a file or saved to a file in “native” ECS format)

· ECS printer support (program is printed to text file)

· Allows recording of the video stream to an .AVI movie file.

· Pop-up windows have a mouse-aware Windows 95-like look and feel (pure DOS users should make sure their mouse driver is loaded).

· Intellivoice emulation (requires separate Intellivoice ROM file IVOICE.BIN—not distributed with IntvDOS).
· Supports up to two Intv2PC hand controller interfaces, allowing emulation of four-player ECS games. Each hand controller interface must be connected to its own parallel port.
Emulation Speed

The emulated speed of games run on the software varies by game and system type. I have found that a Pentium-120 system should run most games well, but there are a few exceptions for which a faster computer might help.

2 Setting It Up

Installing the Software

Most likely you will acquire the emulator via a ZIP archive file that was either downloaded from somewhere or placed on a CD-ROM. The first thing to do is to locate the directory in which the Intellivision Lives! CD is installed. Find the folder where the EXEC.BIN, GROM.BIN, and ECS.BIN files are located.

The next thing to do is to place all the files in the archive file into the new directory. There are a number of programs available for extracting a ZIP file, such as PKWare’s PKUNZIP for MS-DOS, or the shareware WINZIP for MS-Windows. Symantec’s Norton Navigator File Manager for Windows 95 is also a good choice. Using whichever method you choose, extract all the files contained in the ZIP archive into the new directory you just created.

Setting Up Sound Support

Note for Windows 98 users

Windows 98 does some crazy things with timing for DOS programs running in an MS-DOS prompt. This can cause sound to become garbled after a short period of time. If you with to use IntvDOS in a DOS prompt (as opposed to switching to MS-DOS mode or performing a clean boot), I STRONGLY recommend the following:

· Set the “Idle Sensitivity” setting of your MS-DOS prompt to “Low”. This is done by right-clicking on the MS-DOS prompt icon and selecting “Properties”. Click on the “Misc” tab, and move the “Idle Sensitivity” slider to “Low”. The problem is that Windows gives less priority to a DOS program after a period of time if it thinks the program is idle. The “Low” setting causes Windows to wait longer (hopefully forever) before giving the DOS program less CPU time. When the DOS program is deprived of CPU time, it can’t keep up with the sound card and sound becomes garbled.

· Close as many Windows tasks as possible, including tasks on the System Tray. Less running tasks means more available CPU time for IntvDOS, for reasons stated above.

IntvDOS supports sound emulation of the Intellivision using 100% Sound Blaster-compatible sound cards. Although using “true-blue” Creative Labs hardware is strongly recommended, there are a great many sound cards that will work with the emulator. In all cases, if you intend to turn on sound support in the emulator, you should first check to see if your sound card is compatible with the emulator and that it is properly configured.

IntvDOS supports 100% Sound Blaster-compatible sound cards using IRQ settings in the range 0 to 15 and 8-bit DMA settings in the range 0 to 3. To my knowledge, all SB-compatible sound cards use an 8-bit DMA setting in the range 0 to 3, but any that do not will not work with the emulator. To find out or change your card’s settings, you should read the installation manual that was included with your hardware. Most sound cards (especially those from Creative Labs) come with a test program that will tell you the current IRQ and DMA settings of your card. Another way to possibly find out the settings is to check them from within the Windows 3.x or Windows 95 Control Panel.

If you have verified that your sound card’s IRQ and DMA settings are compatible with PCAE, the next step is to ensure that the BLASTER environment string is properly set. This environment string is the mechanism by which PCAE gets your sound card’s settings, and is absolutely necessary for sound emulation to work properly; otherwise, lockups or crashes will likely occur. Usually this line is set automatically by your sound card’s installation software, but this is not always the case. You can check to see if it is set by typing “SET” from the MS-DOS prompt:

Example:

C> SET

TEMP=C:\WINDOWS\TEMP

winbootdir=C:\WINDOWS

SOUND=F:\SBPRO

windir=C:\WINDOWS

COMSPEC=C:\COMMAND.COM

PATH=C:\;C:\DOS;C:\WINDOWS;C:\WINDOWS\COMMAND;…

.

.

.

BLASTER=A220 I7 D1

(This is the line you’re interested in
The basic format of the BLASTER environment string is as follows: There should be a field in the form A#, where the number is the sound card’s address in hexadecimal. For example, my Creative Labs Sound Blaster Pro is at address 220h. Second, there should be a field in the form I#, where # is the IRQ setting of the card. Finally, there should be a field in the form D#, where # is the 8-bit DMA setting of the card. More advanced cards will probably have additional fields on the line, for such features as 16-bit DMA and MIDI ports.

If this line is present in your environment string list, then, as long as the numbers match the actual hardware settings, there is nothing more to check regarding your sound hardware. However, if the line is not present, you will have to see to it that one is present before running the emulator. This can be done manually or it can be added to a batch file, such as AUTOEXEC.BAT. In either case, the process of adding or changing an environment string is a simple DOS command:

C> SET BLASTER=A220 I7 D1

(Example of setting the BLASTER line

All you do is type the DOS “SET” command as above but add the line to be added after it. “BLASTER=” identifies the name of the environment string and “A220 I7 D1” is the environment string it will refer to.

Please note that environment strings from SET commands do not use up any low DOS memory in the same manner as TSR (terminate-and-stay-resident) files, but they do take up environment string space. Usually the largest environment string you will have is your PATH statement, which is usually set in the AUTOEXEC.BAT file. If you look in this file, you will probably see lines that begin with “PATH” instead of beginning with “SET”. Because the PATH environment string is used by everyone, the people at Microsoft included a special command called PATH that sets the PATH environment string. Using “SET PATH=…” instead of “PATH” would yield the same result. At any rate, if you do not have a BLASTER environment string and try to add one, you might run out of environment string space if you have a lot of other environment strings or a few large ones. You can check this by typing “SET” after setting the BLASTER environment string and checking to see if the entire string is present. If it isn’t there or is truncated, you might have to either (1) shorten or eliminate another environment string (such as your path) or (2) increase the amount of environment string space. The method for increasing environment string space varies widely with operating systems and is beyond the scope of this document. The only method with which I am familiar is the “/E:xxxx” command line option in MS-DOS COMMAND.COM, which would be specified in CONFIG.SYS as follows:

SHELL=COMMAND.COM /P /E:1024

This sets the environment string area to 1024 bytes upon bootup. The /P option is necessary to tell DOS that COMMAND.COM is to be loaded permanently. This should work for those using MS-DOS, Windows 3.x, or those running PCAE after restarting Windows 95 in MS-DOS mode. For Windows 95 MS-DOS prompts, you might not have to change the setting since it has an “Auto” feature, but it is available by exploring to the MS-DOS prompt, right-clicking on it, and selecting “Properties”. The initial environment string area size can then be changed by clicking on the “Memory” tab and changing the “Initial environment” setting.

Note: Several users with Pro Audio Spectrum sound cards have expressed problems getting the sound to operate properly. By default, the emulator plays sound at a rate of 31.4 kHz which may be too fast for some cards. There is a feature in the popup menu that allows the playback rate to be set to a lower value which hopefully should help matters (to be discussed in a later section).

Once your BLASTER environment string is set properly, you might want to check to see if your sound card’s mixer settings (if any) are set properly. For DOS users, this usually involves a mixer utility that comes with your sound card. For example, my Sound Blaster 16 SCSI-2 has two programs, SB16SET (which is loaded in my AUTOEXEC.BAT) and SB16MIX, which is a TSR that lets me control the mixer settings. This is important to make sure that the volume settings aren’t set too low. Windows users will probably have similar utilities for their sound cards, and Windows 95 users can try double-clicking on the little speaker icon in the system tray at the bottom right. This should bring up a mixer window that enables control over different settings. FM sound output is usually controlled by the “Midi” slider, and digital output by the “Wave” slider. Be sure also to pay attention to the “Master” slider to ensure that you get sound.

Setting up Gravis GrIP support

IntvDOS supports the use of multiple Gravis GrIP controllers such as the Gravis GamePad Pro and Gravis Xterminator using the Gravis DOS driver, GRIP.GLL. This driver should come with your Gravis product. If you do not have this file, you should contact Gravis technical or customer support.

Setting up GrIP support is very easy. Like the BLASTER environment string, you will need an environment string like the following:

GRIP=C:\GRIP

In the above example, the folder C:\GRIP contains the DOS driver GRIP.GLL. PCAE reads this environment string if available, locates the driver, and loads it. This should allow flawless GrIP controller operation since Gravis’ own driver is used.

Microsoft SideWinder support

At this point IntvDOS only supports one SideWinder controller at a time, and currently supports the SideWinder GamePad, Freestyle Pro, and Precision Pro. It should also work with the Force Feedback Pro, since that controller allegedly has the same packet structure as the Precision Pro (though, of course, force feedback won’t work). Users should please note, though, that SideWinder support was only just added to IntvDOS (and PCAE 2.2 as well) and is somewhat experimental—there could be some difficulty when initially detecting your controller. If your controller is not detected, please retry detecting it a few times.

Note that the SideWinder 3D Pro was not mentioned in the above list. I don’t have one available for testing, so that controller isn’t supported in the current distribution. However, IntvDOS’ INI file supports having additional controller profiles added to it. Supplied with IntvDOS is an experimental program called LEARN.EXE (described later) that should assist in detecting a SideWinder controller’s packet structure. It guides the user through a series of steps in an attempt to figure out what the packet structure is. It doesn’t completely detect a controller’s packet structure, so some manual editing is needed, but it can be a great help.

Intv2PC Hand Controller Interface support

If you have one or more Intv2PC hand controller interfaces, you can use them with IntvDOS. Each hand controller interface connects to a parallel (printer) port, and supports up to two controllers. You can utilize up to two hand controller interfaces to emulate four-player ECS games.

Logitech Digital Controller support

No, IntvDOS doesn’t support Logitech controllers yet, though I did buy a WingMan digital gamepad and PCAE has latent code for reading Logitech packets (thanks to Vojtech Pavlik, author of the Linux joystick driver, for the packet format). I was unable to figure out how to get the controller to start transmitting digital packets through the joystick port—if someone would be kind enough to provide me with this information, then a version 2.3 would be in order.

Note for Windows Users

IntvDOS requires that all its support files reside in the same directory, and that they reside in the same directory from which the program is run. When setting up a Windows 3.1 or Windows 95 shortcut, be sure to specify the IntvDOS directory as the one in which the program should start. Leaving this entry blank will likely cause the program to abort with an error since it always looks in the current directory for its support files and might not find them.

3 Playing Games

Once the software has been set up and the sound card is configured properly, you are ready to try the emulator with any games that you own. IntvDOS requires that all games have the extension .BIN. Games can be run in two ways: from the command line using arguments, or using the built-in menu. The easiest way to run games is to place all of them in the same directory, preferably though not necessarily in the same directory as IntvDOS and use the built-in menu.

The Command Line

Although not necessary for most users, the command line has the benefit of allowing IntvDOS to use games that are in a different directory. The format is as follows:

INTVDOS [path]

path
path to a .BIN game directory, e.g. C:\CARTS

Some examples of command line usage are:

C> INTVDOS D:
C> INTVDOS D:\GAMES
Generally it is cumbersome for most users to use the command line in any but the first example unless writing shortcuts to individual games or writing a game shell.

The Main Menu

The main menu is the area from which most games will be run. It provides for easy selection of any game in the directory, as well as configuration of the emulator. In addition, the menu is the area from which the online help reference can be reached.

The menu consists of a text display showing all the .BIN files detected in the directory. They will normally be displayed in a single color:

gray
all games

Files can be selected by using the cursor keys or joystick 1 to move the highlight bar to the desired file. The file size at the top will change to reflect the selected file.

The Configuration Popup Menu

In addition to the keys that are dedicated to playing games, there are several functions that affect IntvDOS’ general configuration. These are generally related to the controllers that are to be emulated, and the sound and controller configuration. They are accessible by pressing F10 from the main menu, which will pop-up the configuration menu. A description of the available functions is as follows:

Configure controllers
Configure mouse, keyboard, joystick, GrIP, SideWinder, or external controllers

Enable interfaces
Enable mouse, keyboard, joystick, GrIP, SideWinder, or external controllers

Preferences
Brings up the Preferences Popup Menu

Toggle debugger
Toggle using the integrated debugger, which will be invoked when a game is started

The Preferences Popup Menu

The Preferences menu allows the user to set options that affect the emulator as a whole. This generally involves screen and sound options. A description of the available options is below.

Screen mode
Set main game menu screen mode (80x25, 80x30, and VESA modes are available)

File list color scheme
Highlight game files by game type, alphabetically, or alternate colors every 3, 4, 5, or 6 rows

File list display scheme
Display game files by: name + extension + 2, 3, or 4 spaces; name only + 2, 3, or 4 spaces; real title (flush left); or real title (centered)

Set frames per second
Limit the emulator to display a specific number of frames per second (e.g. 60 fps)

Set sound options
Adjust the sound playback rate

Use 320x204 mode.
Instructs the emulator to use a tweaked 320x204x256 screen mode instead of the standard 320x200x256 screen mode. This results in additional display of the Intellivision screen border above and below the game area.

In addition to the above commands, the F1 key can be pressed to display summary screens of the command line syntax.

Menu hot keys

There are two hot keys in the main menu of note:

Enter
Run game, using settings in profile file. If no setting is available, treat game as “normal” Intellivision game (e.g. Poker & Blackjack)

“E”
Emulate in ECS mode. Acts as if a cartridge is plugged into an ECS. Not necessary if ECS mode is specified in the profile file.

Setting Custom Colors

If you choose an alternating color scheme, you can change the foreground and background components of the two alternating colors. A window will pop up showing four color columns. The left half is color 1 and the right half is color 2. For each color, the foreground color is the left column. Use the left and right arrow keys to choose which component to change and use the up and down arrow keys to change that component. Press <Esc> when you are finished to save your changes.

The Game Profile File

The game profile file, INTVDOS.PRO, is a text file the emulator uses that contains the game type, game memory layout, and title for each file in the game directory.

Each line of text in the known game profile file can be either a valid game reference, a remark, or a blank line. Valid game reference lines should contain the filename of a particular game, one or more spaces, a two-letter code describing the game type, one or more spaces, the game title (in double quotes), one or more spaces, and the memory layout information. The memory layout information is defined by using the string “MEM=” and a series of letters and numbers denoting the memory regions into which the game should be loaded. For example, if a particular game must be loaded into regions 5000h-5FFFh, 6000-6FFFh, and A000-AFFFh, then the string should read MEM=56A. Game titles must not themselves contain double quotes. Remarks are not allowed on valid game reference lines. All remark lines should begin with a semicolon (;) as the first character (no leading spaces). The two-letter codes describing game types must be from the following list:

Starts at 4800h (some Imagic games)
C4

ECS game
EC

Any other type
C5

When the Game Is Running

Once the game is visible, IntvDOS is actually emulating the game code in the file. Since your PC doesn’t have the Power and Reset switches on the Intellivision console, the emulator maps certain function keys to those switches. Just like on the actual console, you start by interacting with the game just as you would with a real Intellivision—but with the function keys instead of switches. The function key assignments are as follows:

F1
Display a help/status popup window that shows the function keys available

F2
Quicksave

F4
Quickload

F7
Import ECS basic program (text file)

F8
Load named quicksave game

F9
Capture screen to Windows .BMP file

F10
Reset (like the reset button on the real console)

F11
Record video stream to .AVI movie file

F12
Toggle slowdown

Esc
Exit game (i.e. Power)

Detailed description of function keys:

F1
Displays the pop-up help window, which also pauses the game. Hitting <Esc> returms to the game.

F2
Quicksaves the game to a file xxxxx.GMS, where xxxxx is the name of the .BIN game file. It ATTEMPTS to save the game in the same format as Carl Mueller’s IntvPC emulator, but the format of this file is not completely understood and there is no guarantee that IntvPC will be able to properly read the quicksave file.

F4
Quickloads the game save state from xxxxx.GMS (see F2 for description).

F7
Prompts the user for a filename (e.g. CHAOS.BAS). Imports the file into the emulated ECS by entering the text as if the user was typing it in. Emulator slowdown (i.e. slowing the emulator down to actual Intellivision speeds) is temporarily disabled to allow the program to be input as quickly as possible.

F8
Quickloads a game save state, like F4, but prompts the user for a save state file name first.

F9
Prompts the user for a filename for capturing the screen. It saves the screen as a 256-color Windows .BMP file (320x200x256).

F10
Resets the cartridge as if the “Reset” button were pressed on the Intellivision console.

F11
Save video stream to .AVI movie file. Can be turned off by hitting F11 again or hitting Esc to exit the game.

F12
Turns emulator slowdown on or off. Turning it off would cause the emulator to run as fast as possible, and could result in some games being unplayable on especially fast machines. This may be useful for running ECS Basic programs where greater speed is desired.

ECS Keyboard Support

IntvDOS supports emulation of the ECS keyboard through the PC keyboard. When a key is pressed when in ECS mode, the emulator attempts to determine the corresponding ECS keyboard key and “inputs” that key if a match is found. If a key is mapped to controller or console functions as well then both functions will be represented. For example, mapping the “A” key to a controller button will result in the button press as well as the letter “A” being typed in when the key is pressed. In addition, there are special keys that correspond to special ECS keys. These special keys are as follows:

Tab
ECS “ESC” key

Arrow keys (four standalone)
ECS arrow keys

EITHER Shift
ECS “SHIFT” key

EITHER Ctrl
ECS “CTL” key

MAIN Enter
ECS “RTN”

Note that a 101-key keyboard is REQUIRED for ECS support since only the four standalone arrow keys are mapped to ECS arrow keys. This is so that the normal numeric keypad can be used for controller support. Also, since the PC <Esc> key is used to exit to the main menu screen, the ECS <Esc> key is mapped to the PC <Tab> key.

ECS Cassette Support

IntvDOS supports loading and saving ECS Basic programs through an emulated cassette interface. When loading a program, IntvDOS extracts the four-character ECS program name from ECS memory and looks for a file on your hard drive with the same name. For example, if the program is “LIFE”, IntvDOS will look for a file called “LIFE” and attempt to load it. If no such file is found, it will report to the ECS that it wasn’t found, just as if it wasn’t found on a cassette tape.

When saving an ECS Basic program to cassette, IntvDOS scans the data written to the cassette port and extracts the four-character program name. It then creates a file of the same name and then writes ALL data to that file that the ECS would have written to the cassette data port (this includes the program name).

Since IntvDOS directly maps MS-DOS file names directly to the ECS Basic program name, it is important to choose names that are compatible with standard MS-DOS filename.ext filenames. For example, names like “LIFE” and “PROG” are okay, but names like “ALD*” and “8.1.” (two periods) would cause an error and might even crash the emulator.

Emulator slowdown (emulation of actual Intellivision speeds) is temporarily turned off during cassette loading and saving.

ECS Printer Support

IntvDOS supports emulation of the ECS printer port (which, in actuality, is also accessed through the cassette port, but with a different destination code for the port control register). This allows ECS Basic programs to be printed to a standard text file. When printing a program, IntvDOS prompts you for a destination file name and saves all printer output to that file. Every time you use the ECS printer, you are prompted for a file name. If you abort typing in a file name, the printout is printed by default to INTVDOS.PRN.

Emulator slowdown (emulation of actual Intellivision speeds) is temporarily turned off while printing to the ECS printer.

Importing a Text-File ECS Basic Program

Pressing the F7 key pops up a window where you can enter the name of a text file containing an ECS basic program. If you enter a valid file name, IntvDOS will open it and enter the file into the emulated ECS just as if you were typing it yourself. It is important that the file only contain, therefore, characters that can be entered using a real ECS keyboard (e.g. no ampersands, “&”) and that the file contain the text EXACTLY as it would be entered (no annotated remarks).

What are Interfaces?

Interfaces are the means with which you interact with your computer. For example, in front of you there is a mouse and a keyboard, and perhaps a joystick. Or maybe you have a Gravis GrIP controller like the Xterminator, or maybe it’s a SideWinder Freestyle Pro. Or if you’re really resourceful, maybe you’ve built an external interface board to your parallel port and have connected the controllers that came with your Intellivision. In any case, each of these things are interfaces—they’re the means by which you interact with your computer.

All available interfaces are arranged in order of priority, and each interface can have none, one, or several of its functions mapped to capabilities. A capability is something like: “controller 1 disc up” or “controller 2 left side button” or “console reset switch”; it’s something that you would find on an actual Intellivision console with actual Intellivision controllers.

So how do you connect the interfaces that you have in front of you with the capabilities of the Intellivision? You assign capabilities to them. For example, if you want button 1 of your joystick to correspond to the enter key of the Intellivision controller 1, you would perform the following steps:

· Select configure controllers

· Select the joystick interface

· Select button 1

· Select the Intellivision controller 1

· Select the enter key capability

This may look tedious, but once it’s all set up, you could, for example, have your mouse control the disc, your joystick control player2’s controller, you keyboard control the ECS keyboard, etc.

But what about the interface priority that was mentioned earlier? Basically, interfaces are arranged in hierarchical order, and you can enable or disable a particular interface at will. For those interfaces that are enabled, higher-priority interfaces take precedence over lower ones for those capabilities that are assigned to them. For instance, if you have the controller capabilities assigned to both your keyboard and joystick and both interfaces are enabled, the joystick interface will take precedence over the keyboard interface since it has a higher priority. That is, the keyboard keys that share those capabilities will have no effect. To use them, you have to disable the joystick interface. This prevents interfaces from interfering with each other. The priority order (lowest to highest) is: mouse, keyboard, joystick, GrIP, SideWinder, and external.

If you have a capability assigned to an interface, IntvDOS will let you know by placing a check mark next to that capability. Additionally, for each controller type assigned to an interface, that controller type will be checked. In this way you could easily tell, for instance, if you have anything assigned from controller 1 to an interface.

Using Joysticks With IntvDOS

IntvDOS will work with either none, one, or two standard PC joysticks. In addition, one Thrustmaster FCS, CH Flightstick Pro, or six- or eight-button gamepad are supported. Either four-button or two-button joysticks will work. To enable joystick support, make sure they are first plugged into your game port. To connect two joysticks, it might be necessary to purchase a joystick “Y” cable to connect both joysticks to a standard joystick port. Some newer game port cards have two ports on them, such as the Gravis GameCard that sells for about $15.00 (US).

When the joystick(s) are connected, select “Configure controllers” from the popup menu. You will be given a list of interfaces. Select the Joystick interface and choose your joystick type. You will be prompted with available joystick buttons and axes, and a calibration option. Select the calibration option. You will be prompted with calibration questions for joystick 1. At this point it is generally a good idea to center any X/Y trimmer adjustments on the joystick. After you have followed the directions, the same questions will appear for joystick 2. If you have two joysticks connected, you can follow them to calibrate it, but if only one is connected, hit the <Esc> key to notify the emulator that only one joystick is connected. The emulator will turn off support for joystick 2. In the event that recalibration is desired, the calibrate option can be used to recalibrate all joysticks. This is also necessary when unplugging the second joystick to switch control for player 2 back to the keyboard.

Using the Keyboard With IntvDOS

IntvDOS has the capability of mapping most if not all controller functions to the keyboard. Keys can be mapped to capabilities by configuring the keyboard interface and selecting a key to map. Mapped keys appear in yellow.

Using Intv2PC Hand Controller Interfaces With IntvDOS

Selecting the “Intv2PC” option from the “Configure controllers” menu will display a menu showing all detected parallel ports on your computer. For each Intv2PC interface you have, select the port to which it is connected. Another window will appear with two choices, asking you to select which pair of controllers to which that particular Intv2PC interface pertains. Controllers 1 and 2 pertain to the standard controllers on an Intellivision Master Component, while controllers 3 and 4 pertain to additional controllers that would be connected to an ECS for four-player game support.

Slowing Down the Emulator For Faster PC’s

The popup menu contains a feature that can be used to limit the emulator to display a certain number of frames per second. For example, standard NTSC Intellivisions display at 60 fps, so selecting “Set frames per second” from the Preferences popup menu and entering “60” should limit the emulator to the standard NTSC speed. In addition, this feature can be used to make certain games either easier or harder by slowing them down or allowing them to be played faster.

For users running the emulator from within an OS/2 DOS prompt, it may be necessary to select an option allowing DOS programs to access the hardware timer for IntvDOS to run properly. The frames-per-second slowdown feature uses the hardware timer to determine how much time has elapsed since the last emulated vertical refresh. Based on the number of frames per second it is told to display, it enters a waiting loop until a certain amount of time has elapsed.

In certain rare circumstances, it might be necessary to use different fps values either with certain system configurations or after an upgrade. This is very unusual, but there have been reports of erroneous timer information reaching the emulator somehow. In cases where 60 frames per second results in very slow operation, try half-multiples such as 90, 120, etc.

Configuring the Emulator’s Sound Output

The “Set sound options” option (in the Preferences menu) allows the sound playback rate to be adjusted. By default, the emulator sets the sound card to output the sound at a rate of 44100 Hz. This seems to work for most sound cards, but there are a few that have had problems getting sound to run. After testing this on a Pro Audio Spectrum 16 sound card, it was found that a slower playback rate would work much better on this card. You can select from four playback rates: 31400 Hz, 22050 Hz, 15700 Hz, and 11025 Hz. It is recommended that you use the highest rate that your sound card supports, since lower rates decrease sound resolution and thus sound quality.

Changing the Main Screen Resolution

From the Preferences submenu you have the option of changing the main screen mode to something other than the standard 80 columns by 25 rows. If your base screen mode is 80x25, IntvDOS will also make 80x30 text mode available. Also, if your VGA card has VESA support, PCAE will detect VESA text and graphics modes and make them available. It has code to simulate a DOS text environment in 256-color, 16-bit, 24-bit, and 32-bit VESA graphics modes. This makes it possible to display much more information on screen than the standard text mode.

When changing modes, IntvDOS will let you know that it is about to attempt a screen mode change, and that, if the new mode does not display correctly, you should wait for it to automatically revert back to the original mode. This is similar to the method of changing resolutions in Windows 95, where upon changing modes you will be asked if the new mode displayed correctly. If you respond <Y>es, the new mode will be retained, otherwise IntvDOS will return to the original screen mode. IntvDOS saves screen mode information in IntvDOS.INI, so that IntvDOS will automatically use the last screen mode you used when it was last run.

4 Development Tools

In addition to the emulation engine, IntvDOS includes features designed to assist developers of Intellivision programs and other Intellivision emulators. It contains an integrated debugger that can be run in conjunction with any Intellivision program by using the “Toggle debugger” option from the popup menu. It has a somewhat similar look and feel to Borland’s Turbo Debugger, but with only those features that are basic to program debugging in general and specific to the Intellivision:

· Display of program code in a code window which can be navigated using the cursor keys

· Display of all CP1600 register contents as well as flag bits

· Display of the contents of Intellivision RAM addresses 0000h to 03FFh (scrollable display)

· Ability to execute unhindered, trace into, trace over, and execute until specific instructions or specific scan lines

· Online command reference

· Ability to switch the debugger display to 320x400x256 video mode (should be compatible with all VGA cards) to display additional information

· Can display the current contents of the emulated video screen

· Ability to enter multiple bytes of data into the CP1600’s addressable range

· Ability to change a CP1600 register’s contents

· Ability to save the CP1600 memory range 0000h-FFFFh to disk

· Can break on a symbolic algebraic equation

· Can display the locations of the 8 graphics sprites in X, Y format

· Can mark the position of the 8 graphics sprites on the game screen with numeric values

All debugger commands are invoked with certain keystrokes:

<up> and <down>
Navigate the code window

A
Enter CP1600 instruction; instruction will be assembled and placed into the memory position at the top of the disassembly window. Instructions are checked for validity and a warning will be issued if an instruction requires more than ten bits of memory.

B
Move the disassembly listing to BACKTAB (0200h)

D
Display toggle—toggle between standard 320x200x256 mode and 320x400x256 mode

E
Enter one or more words of data into the CP1600’s address range

G
Go—execute the code unhindered until <Esc> is pressed

H
Run to here—execute until the instruction at the top of the code window

P
Position CPU window to user-specified address

R
Change a 6507 register’s contents

S
Step over—execute until next instruction

T
Trace—execute current instruction only

X
Enter breakpoint equation

Z
Save CP1600 memory area 0000h to FFFFh to disk

<Ins>
Move the highlight to the instruction pointed to by the Program Counter

<Space>
Display the contents of the emulated game screen

<Esc>
Exit the debugger and return to the main menu

<F1>
Display the help reference screens

— (minus)
Toggles display of the current positions of the graphics sprites when the space bar has been used to show the game screen

[and]
Scroll the data dump window one line at a time in the range 0000h to 03FFh

When in 320x400x256 mode, the debugger also displays the positions of the 8 graphics sprites in X, Y format.

Debugger Layout

The largest window, in the upper left corner of the screen, displays the assembly code in the Intellivision game program. A yellow highlight bar will be positioned on the next instruction to execute and the code window can be navigated using the cursor keys. To the right of the code window is an area that displays the contents of the CP1600 status word register, and right below that is an area that displays the contents of all eight CP1600 registers in hexadecimal format.

At the bottom of the debugger screen is a data window that displays the lower memory area of the CP1600. It is scrollable with the left and right bracket keys ([and]) in the range 0000h to 03FFh. When in 320x400x256 mode, between the code window and the main data window are three smaller data windows, one of which is used to display the locations of the eight graphics sprites in X, Y format.

Entering one or more words of data

Using the “E” key from the debugger brings up a pop-up window that allows you to enter a target address and one or more bytes of data. The format of the entry should be a hexadecimal address, and equal sign, and one or more hexadecimal bytes, separated by spaces. If a data entry is invalid, that address in the list is skipped. Also, the debugger does not have the hooks to the code that affects the TIA’s output, and therefore this method cannot be used to change TIA registers (it will only allow addresses in the range (80h to 1FFFh to be changed). Pressing <Esc> at any time aborts the data entry. Finally, be aware that for bankswitched games, all changes made are temporary—when the bank is switched, all changes made are lost.

Examples

1004=00 4 34 AE D3 2F
(Enters these six bytes into 1004h to 1009h

143F=56 4E 33
(Enters 56h, 4Eh, and 33h into 143Fh, 1441h, and 1442h

Changing a CP1600 register’s contents

Hitting the “R” key opens a pop-up window that asks for a 6507 register and value to be entered. The format should be the register name, an equal sign, and a hexadecimal value to be entered. Hitting <Esc> aborts the process.

Examples

R0=13F3h
(Changes register 0 13F3h

R5=3
(Changes register 5 to 0003h

R7=34E2
(Changes register 7 to 34E2h

SW=6
(Changes the status word to 6h

Note that the status word is ANDed with 0Fh to keep the value in the legal byte range.

Entering a CP1600 instruction

Pressing the “A” key opens a pop-up window in which you can enter an instruction by name. The instruction will be entered into the memory position at the top of the disassembly window. If an invalid instruction is entered, an error message will be displayed. In addition, the previous memory location will be checked for an SDBD instruction, and the entered instruction will be adapted, if applicable. If an entered instruction requires more than ten bits of RAM in any given word location, a warning will be issued.

Examples

ADD@
R5,R6

PSHR
R0

PULR
R3

J
13F4

Instructions are case-insensitive. Also, ALL numbers will be interpreted as hexadecimal; there is currently no way to enter a number as a decimal, octal, or binary value. You should not add any prefixes or suffixes (e.g. “h”, “$”, or “0x”) to denote hexadecimal values.

Saving to Disk

Since the “E” key allows you to interactively change a game file as it runs, the “Z” key allows you to permanently save all CP1600 memory to disk. Hitting “Z” brings up a pop-up window that lets you enter a path and filename at which to save the file. Invalid filenames will be ignored, and hitting <Esc> lets you abort the process.

Breaking On an Equation

This is an advanced feature for which a really fast PC is recommended (400MHz or greater) and is accessed via the “X” key. It allows you to enter an algebraic equation, which, when true, will cause a breakpoint. For example, you might want to break if a register contains a certain value, if the contents of a memory address is greater than the contents of a different memory address, and so on. The possibilities are nearly limitless. For example the expression:

(S1X=5) || ([8D]=4)

will cause a breakpoint if sprite 1’s horizontal position is 5 or if the contents of memory location 008Dh is equal to 4.

The syntax is somewhat similar to C, and should be somewhat familiar. Expressions can use equalities or inequalities, multiple levels of nesting, boolean operators, bitwise operators, and algrbraic operators. As long as the entire expression can evaluate to a boolean (true or false) value, anything goes. Multiple nesting with parentheses is allowed. Integers are decimal by default, but are interpreted as hexadecimal if followed by an “h” (e.g. 3Dh). However, address locations (in square brackets) are always interpreted as hexadecimal. All expressions are case-insensitive. The following variables are available (also shown in the online help):

S1X to S8X
Sprite 1, 2, 3, 4, 5, 6, 7, or 8 horizontal position

S1Y to S8Y
Sprite 1, 2, 3, 4, 5, 6, 7, or 8 vertical position

R0 to R7
Contents of CP1600 register R0, R1, R2, R3, R4, R5, R6, or R7

SW
Contents of CP1600 status word

[addr]
Contents of hexadecimal address

R[addr]
TRUE on read from hexadecimal address

W[addr]
TRUE on write to hexadecimal address

The following operators are available (also shown in the online help):

+
Integer addition

-
Integer subtraction/negation

*
Integer multiplication

/
Integer division

%
Integer modulo

&&
Boolean AND

||
Boolean OR

^^
Boolean XOR

! or ~
Boolean NOT

&
Bitwise AND

|
Bitwise OR

^
Bitwise XOR

= or ==
Equality

<> or !=
Inequality

<
Unsigned less than

>
Unsigned greater than

<=
Unsigned less than or equal to

>=
Unsigned greater than or equal to

(…)
Parentheses

Please be aware that running a game will slow to a crawl when using this feature, since the entire expression has to be evaluated on every CP1600 instruction. The more complex an expression is, the longer it takes to evaluate. But for those who are developing a game and really need some help tracking down a problem, this could be a very big help. Entering a blank expression will turn the feature back off and restore emulation speed to normal.

Some more examples of break expressions:

R[034F]

(Break on any read from [034Fh]

(R0 >= 5) && ((R4 ^ 4) = 3)
(Break if R0 >= 5 AND (R4 XOR 4) = 3

W[0190] || R[1101]

(Break on any write to [0190h] OR any read from 1101h

W[019A] || (R4=31h)

(Break on any write to 019Ah OR if R4 = 31h

5 SideWinder Support

IntvDOS includes native support for Microsoft SideWinder digital controllers. These types of controllers communicate with your computer by sending packets of information through your joystick port to your PC. This differs from traditional “analog” joysticks in that all of the joystick information is contained in the digital packet; the controller does not make use of the four analog axis lines on the joystick port. Instead, a packet is sent at high speed along the four digital button lines. This has the benefit of allowing controllers to contain any number of functions, instead of being limited to the traditional four buttons and axes.

The difficulty with digital controllers is that every controller has a different packet size and format. IntvDOS comes with packet formats for several SideWinder controllers: the GamePad, Freestlye Pro, and Precision Pro. The Precision Pro and Force Feedback Pro allegedly share the same packet format, so that controller should work as well (except for the force feedback function). There exist other SideWinder controllers that IntvDOS doesn’t initially support, but support can easily be added by adding their profiles to INTVDOS.INI.

In the [SideWinder] section of INTVDOS.INI you can add additional profiles describing other SideWinder controllers. There are five entries per controller: DIG#AAA, DIG#DEF, DIG#NUM, DIG#BIT, and DIG#FLP, where # is the profile number, beginning with 1. So, for example, the SideWinder Gamepad’s profile would begin with DIG1, the next with DIG2, and so on. Except for DIG#NAM, all entries are case-insensitive. The five entries are described as follows:

DIG#AAA contains the name of the controller. IntvDOS already knows it’s a Microsoft product and will automatically add “Microsoft” as the vendor. An example entry would be:

DIG2AAA=SideWinder Precision Pro

The entry has the “AAA” suffix so that it will sit above the five profile entries, since PCAE automatically writes keys to the .INI file sorted alphabetically.

DIG#DEF is a string that defines the basic function of each bit in the digital packet. For a packet of a certain size, this is a string containing an equal number of characters where each character describes that bit’s function. Possible characters are:

B
Button

X
Digital axis (up, down, right, left, diagonal)

H
Digital hat (like digital axis, but works a bit differently)

T
Analog (i.e. proportional) throttle or flipper

A
Analog (i.e. proportional) axis movement, including twist

1
Bit is always 1

0
Bit is always 0

P
Parity bit (even parity)

Letters used in DIG#DEF other than those above will be ignored.

DIG#FLP describes which bits should be flipped before the packet is analyzed. It is the same length as DIG#DEF, where a “0” leaves the corresponding bit alone and any other character results in the bit being flipped.

Some controllers have more than one “throttle”; Gravis Xterminators, for example, have a throttle on top and two proportional flippers near the index finger position. In this case, as far as IntvDOS is concerned, there are three throttles. Perhaps there will arise a SideWinder controller with similar functionality. An analog throttle is here defined as any one-dimensional proportional control (so an analog joystick is NOT two throttles, though there is nothing to stop you from defining it as such). Likewise, the handle twist of a SideWinder Precision Pro should be defined as a throttle since it has no other axis to counterpart it.

DIG#NUM is the same length as DIG#DEF, and describes to which function each bit refers. For example, a SideWinder Precision Pro has two analog axes: the X (left-right) and Y (up-down) axes. That means DIG#DEF has lots of “A”’s in it. Some of them will be assigned a “0” in DIG#NUM, and some a “1”. This also follows for buttons and throttles, but digital hats and digital axes are handled a bit differently.

A digital axis, as described above, specifically refers to part of a packet where up, down, left, and right each have a separate bit. A good example is the SideWinder Gamepad; pressing up toggles the “up” bit, pressing right toggles the “right” bit, and pressing up and right toggles both bits. With this scheme no more than two bits are toggled at a time. Digital hats are handled differently; even though they also have only eight possible directions, the controller transmits a number between zero (0) and eight (8) to describe the direction (since centered is a “ninth” direction). This is a fundamentally different way of signalling since all three bits can change for a given direction. Why Microsoft used two separate methods is a complete mystery. A good example of a digital hat is the hat on the Precision Pro and the directional pad on the Freestlye Pro, which, although it looks like it would be a digital axis, actually uses hat signalling.

When numbering the digital axis in DIG#NUM, X and Y axes are treated separately (by convention, the X axis is generally thought of as being first, but this isn’t strictly necessary). Therefore, the X axis (the left and right bits) would be numbered “0”, and the Y axis (up and down bits) would be numbered “1”. In the case of multiple D-pads (resulting in more than two digital axes), continue with “3”, “4”, and so on.

Digital hats, from a bit numbering standpoint, are treated as a unit since the bits aren’t initially separatable into X and Y components. So in this case, all three (four for some controllers) bits are numbered the same for each hat, starting with “0”. Internally, IntvDOS separates the hat data into X and Y components so that it can treat hats the same as digital axes. When you configure a controller with a digital hat, you will see two hat axes, with the X axis first.

If a packet has parity bits or bits that always contain the same value, it is important to define those bits because they make it much easier for IntvDOS to properly detect a good packet and discard invalid ones. One resource for finding packet structures is the Linux joystick driver, authored by Vojtech Pavlik. Also helpful is the included utility LEARN.EXE, described below.

DIG#BIT, like DIG#NUM, is the same length as DIG#DEF. It describes bit ordering for each function. For buttons this isn’t needed, and those bits are ignored. For digital axes, “left” and “up” are always bit 0, whereas “right” and “down” are always bit 1. Since digital hats, analog throttles, and analog axes transmit numeric information, this field must contain each bit’s position starting from 0 (least significant bit) to some other number (most significant bit). This field is also ignored for parity bits and bits that always contain a certain value.

LEARN.EXE: A Helping Hand

Included with IntvDOS is a small program intended to help detect the major parts of a SideWinder controller’s digital packet structure. It can’t detect parity bits or bits that always have a certain value (because occasional invalid packets throw it off), nor can it detect bit ordering, but it can tell which bits are button bits, digital axis bits, digital hat bits, throttle bits, or analog bits. It can also tell which bits refer to which button or throttle. It works by guiding the user through a series of steps, where at each step the user is asked to something with his/her controller. When it is finished, it creates a file called LEARN.INI which can be copied and expanded to complete a packet profile (to be placed into IntvDOS.INI).

When it is run, at the top of the screen the detected packet size is displayed, and immediately below are two lines describing what LEARN.EXE has learned about the packet. They correspond roughly to the DIG#DEF and DIG#NUM entries described above. At the bottom the last packet read from the controller is displayed in real time whenever the user is asked to do something with the controller. Pressing <Esc> at any time aborts the process and exits to DOS.

Because my knowledge of SideWinder packet protocol is incomplete, LEARN sometimes has trouble initially detecting the controller’s packet size. SideWinder controllers initially transmit an ID packet that is different in size from the normal data packet, and I don’t have the format for ID packets. LEARN is designed to perform an initial wait and statistical test to find the data packet size, but this occasionally fails. When the program first comes up, perform step 1 (directions will be on-screen) and watch the real-time packet information at the bottom of the screen. If the data changes repeatedly, LEARN has probably detected the correct packet size. If nothing happens, it has probably detected an ID packet instead. In that case you should exit by hitting <Esc> and try running LEARN again.

When you attempt to configure a SideWinder controller in IntvDOS, it also may have trouble initially detecting your controller. If the name of your controller doesn’t immediately show up in the controller list and you know that IntvDOS.INI contains the packet profile for your controller, hit <Esc> and try to detect it again.

6 Troubleshooting

None of my games run

Make SURE you have the Intellivision Lives! CD and have placed IntvDOS in the same folder as the .BIN files that come with the emulator. You will have to install the emulator from the Intellivision Lives! CD onto your hard drive first. IntvDOS requires the Intellivision Lives! emulator to run, since IntvDOS contains none of the copyrighted information that is needed for any Intellivision emulator to function. My recommendation: go and buy Intellivision Lives! first. You won’t be disappointed. I had my emulator already running before I bought it, and I was still impressed. If you’re into classic gaming, you’ll have to admit that it’s one of the coolest things out there.

My games run, but I don’t hear any voice for Intellivoice games

While IntvDOS fully supports the Intellivoice, it does NOT contain the copyrighted ROM code that the Intellivoice contains. Without this ROM your Intellivoice games will run, but you won’t hear any voice since the unit isn’t being properly emulated. By default IntvDOS expects this to be a 2k (2048-byte) file called IVOICE.BIN. I understand that this file does not come with the Intellivision Lives! CD but as I don’t own the rights to the code, I can’t distribute it. Perhaps it will be included with the upcoming Intellivision Rocks! CD. I simply don’t know and I can’t help anyone who might ask me for the file (i.e. ALL such requests will be ignored).

The computer hangs (or the emulator crashes) when the emulator is run

First, make sure that there is enough low DOS memory available for the program. To get more low DOS memory, you might have to change your system configuration, such as removing TSR’s from either your AUTOEXEC.BAT or CONFIG.SYS files, or perhaps by loading them into upper memory blocks (UMB’s).

If you have met the memory requirements, the next thing to check is if your BLASTER environment string is set properly if you are using sound support. An incorrectly set environment string could cause lockups if sound is enabled in the emulator. You can test this by disabling sound support with the “Toggle sound” option and then attempting to play a game. If the emulator runs properly, this could be an indication of an incorrectly set BLASTER environment string. If this is the case, please see the earlier section on setting the emulator up for help or consult your sound card’s documentation.

If both the memory and sound setups are correct but you are still experiencing lockups, check to see if you have a DOS mouse driver loaded if you are not running the emulator from a Windows or OS/2 MS-DOS prompt (i.e. you are in true MS-DOS mode). Not having a DOS mouse driver loaded really shouldn’t cause a lockup, but it is recommended (and necessary to emulate paddle games). Common mouse drivers are usually called MOUSE.SYS or MOUSE.EXE.

If you are running the emulator from an OS/2 DOS prompt, be sure to enable access to the hardware timer in the DOS prompt setup. There has been a report from an OS/2 user who found out that the emulator would not run without this enabled.

The emulator runs VERY slowly

The first thing to check is your computer’s speed. Benchmarks have shown that, using INTVDOS.EXE, a Pentium-120 can run most games well. If your computer is significantly slower, expect slow operation. You can find out how fast your PC is emulating the Intellivision by running a game with a timer (such as a sports game) and timing how long it takes to count to a certain point. Remember, though, to set the frames-per-second value to 0 to allow the emulator to run as fast as possible before performing benchmarks.

If tests show that the games are not being emulated as fast as they should, the first thing to check is your joystick calibration setup. If you do not have joysticks connected, you should make sure to disable joystick support by disabling the joystick interface. Otherwise, the emulator will constantly poll the joysticks, which can take a very long time if none are connected. Similarly, if only one joystick is connected, you might want to recalibrate the joystick, making sure to hit the Esc key when asked to calibrate the second joystick. This will tell the emulator that only one joystick is connected and prevent it from constantly polling joystick two. If the above procedures don’t help, try changing the frames-per-second value. There have been occurrences where certain video cards incorrectly report vertical refresh information to the emulator, causing it to slow itself down more than it should. Trying higher values for frames-per-second might help.

Finally, if all else fails, check if your computer has a “turbo” feature, usually a button on the case. The effect of the turbo being off should be very noticeable, since ALL software should run slowly. Make sure the turbo is ON, usually indicated by an LED nearby.

The emulator runs more slowly when I use joysticks than when I use the keyboard

It is normal to experience a 10 percent or so degradation of emulation speed when using joysticks with the emulator. This is due to the method required to read analog joysticks. They can only be read by initializing the joystick port and waiting until a certain bit flips or until a time limit has been reached. This occasional waiting loop causes the loss in emulation speed.

The emulator runs, but there is no sound

If your speakers support optional external power supplies for additional amplification, you might have to set the power switch to “Off” if you are not using any additional power supply for them. Try testing sound with another program to make sure your sound card and speakers are set up properly.

If and your speakers are set up properly, the problem is most likely an incorrectly set BLASTER environment string. See the earlier section on setting the emulator up for help with this, or consult your sound card’s documentation. If there still isn’t sound, check to make sure your sound card’s IRQ and DMA are supported by the emulator.

If your sound card has mixer software or you are running in Windows 95, check your mixer settings to make sure they are correct. For DOS users, you should have mixer software that came with your card, or they might be available from your manufacturer. For example, my Sound Blaster 16 SCSI-2 has a program called SB16MIX.EXE, a DOS TSR that lets me set the individual mixer settings. Windows users should have similar software, and Windows 95 users can try double-clicking on the little speaker icon in the system tray at the bottom right of the screen. You should make sure that the digital and FM outputs are the same value (they are usually called “wave” and “midi”) and that the master volume is not zero or a small value.

Incompatible cards are extremely rare these days, but make sure your sound card is 100% Sound Blaster-compatible, preferably Sound Blaster Pro compatible (a simple AdLib FM card or Creative Labs Game Blaster will not do). In my opinion there is no substitute for a true-blue Creative Labs part, but they tend to command a premium.

I have sometimes had problems after running other software that would cause the sound card to become inaccessible afterwards. Turning off your computer and turning it back on will reset the sound card and might help matters.

The emulator runs too fast; games are unplayable

From the popup menu, select the “Set frames per second” option. You will be asked to enter a number of frames per second at which the emulator will run. This causes the emulator to limit its speed so as not to exceed the frame rate that you specify. Entering zero will cause the emulator to run as fast as possible. For standard NTSC Intellivisions you should enter 60, which should limit the emulator to running at 60 frames per second.

If you had already done this and the emulator still runs too fast, your video card might not be correctly reporting vertical refresh rates to the emulator. Try smaller values, like 45 or 30.

The cursor is uncontrollable from the main menu; it keeps moving by itself

This probably indicates that either (1) you do not have joysticks connected but joystick support is enabled, or (2) you have joystick(s), but they either need to be recalibrated or aren’t connected. If there are no joysticks, disable joystick support by choosing “Enable interfaces” from the popup menu and disabling the joystick interface. The emulator will stop polling the joysticks for cursor movement, and will only use the keyboard. If you have joysticks, make sure they’re connected and recalibrate them with the “Calibrate and use joystick(s)” option (see the earlier section for the calibration instructons). The above also applies to GrIP, SideWinder, or external interfaces.

The menu doesn’t show any games to run

Make sure you are running IntvDOS from the right directory. If the game files are in a different directory than the emulator, you have to specify the alternate directory from the command line (e.g. INTVDOS G:\GAMES). Also, make sure that all games have extensions of .BIN, the only extensions the menu displays.

When I try to run the program I get a “Runtime error” message.

Make sure that the emulator is in the current directory, not in a different directory than the one you are in. For example, typing “C:\INTVDOS\INTVDOS” from a directory other than C:\INTVDOS will not work, since the emulator looks in the current directory for its support files. Also, make sure none of the support files included in the IntvDOS distribution are missing. If you are running the emulator from a Windows shortcut, make sure to specify PCAE’s starting directory in the shortcut setup. If you are trying to specify an alternate directory for games (e.g. INTVDOS G:\GAMES), make sure the alternate directory actually exists (i.e. make sure that G:\GAMES exists and is a directory, not just a file).

The emulator works on one computer, but one of the above problems arises when I copy it to another machine

Different machines have different hardware and software configurations. Make sure there is adequate memory, that the sound setup is correct, and either disable keyboard support in the emulator or recalibrate the joystick. Follow the troubleshooting help for the given problem to attempt to solve it.

When I try to run a certain game, I either get a black screen, garbage on the screen, or it exits immediately

There are three possibilities: (1) the game isn’t supported by the emulator; (2) the game is a different type than the one you have specified, or (3) the game is a bad ROM dump. If the game isn’t supported, there really is nothing you can do; perhaps a future version might support it. If this is a new game, make sure the entry in the profile file is correct, especially the MEM= setting. The game must be loaded into the right memory region to work. If you can establish the proper game type, you can edit the profile file and add the game to the list. If nothing works, perhaps it is a bad copy of the game.

I’m having trouble calibrating my joystick(s)

First, make sure they are connected properly, and test them with some other piece of software to ensure that the joysticks and joystick port are working properly. Then, you should examine your joysticks for what are usually known as X/Y trimmer adjustments. These usually take the form of knobs or sliders, and are used for fine adjustment. Before calibrating the joystick, you should make sure the trimmer adjustments are centered (not at either extreme) to allow the fullest range of values to be reported by the joystick.

If centering the trimmers and recalibrating doesn’t help, and you have a speed-adjustable joystick port, you might want to examine the speed setting of the port. If you have a driver that sets the speed when you boot up, sometimes simply rebooting or powering down and back up helps, since this will reset the joystick port to your speed setting. It might be necessary to change the speed setting as a last resort, but this usually isn’t necessary.

One of the joystick buttons doesn’t work, or hitting a joystick button causes more than one thing to happen

You might have a problem with your joystick. Make sure it is fully plugged in, and test it with some other software. If it works fine with other software, check the joystick button mappings by selecting “Configure controllers” from the main menu and selecting the joystick interface to make sure that you don’t have more than one thing mapped to the same joystick button. If the joystick has problems with other software as well, try remapping the buttons to compensate. In this case, you might consider buying either a new joystick or a new game port. You might be able to tell where the problem is by trying a different joystick to see if the problem persists.

When I run IntvDOS, I get an error like “EMM386: Unsupported DMA mode. Press Enter to reboot”

There seems to sometimes be a problem when running IntvDOS with EMM386, if your sound card is compatible with Sound Blaster DSP version 2.00 or higher (the vast majority of sound cards). The problem is that EMM386 doesn’t always like the auto-initialize DMA mode that the emulator uses to achieve near-perfect sound. The best suggestion is to either run the emulator from within a Windows 3.x or Windows 95 prompt, or remark out the EMM386 line from your CONFIG.SYS file.

I get an error message saying that a file is missing

IntvDOS is designed to abort gracefully if a file is missing or if there are no game files in the target directory. The message should tell you what the emulator is looking for and the directory in which it is looking. If this is not the directory you expect IntvDOS to use, check to see that you are in the right directory and that any Windows shortcuts are set up properly. If the directory is correct, check to make sure that the desired file(s) are there.

My Gravis GrIP controller doesn’t work or isn’t detected

Make sure you have GRIP.GLL on your system and that you have a DOS environment string called “GRIP=” that points to the folder in which GRIP.GLL is located. The environment string should not contain “GRIP.GLL” itself. If it ends in a backslash, try removing the backslash. Make sure your controller is plugged in, and your game port works. Also, some GrIP controllers have a switch on the bottom that has to be set to GrIP mode (e.g. Gravis GamePad Pro) for GrIP functionality to work. Windows GrIP drivers are NOT necessary to use GrIP controllers. Finally, if you don’t have GRIP.GLL and you have a GrIP controller, contact Gravis customer support or go to the vendor where you got the controller. Please note that the Gravis Standard GamePad (has a D-Pad and four buttons) is NOT a GrIP controller but a standard joystick.

Another problem that has arisen is with the Adaptoid USB n64 adapter. For some reason there can be problems getting GrIP joysticks to work when the Adaptoid is the primary controller. This problem seems to exhibit itself throughout Windows, not just in IntvDOS. Try booting to a “pure” DOS prompt or disabling the Adaptoid.

My Microsoft SideWinder controller isn’t detected

First, test the obvious; make sure it’s plugged in, and test it with other software. Try exiting to the main menu and re-detecting it. Sometimes (I don’t know why) it helps to wait thirty seconds or so after plugging the controller in while it initializes. Try unplugging it, plugging it back it in, waiting thirty seconds, and then re-detecting. Make sure that the packet structure is in INTVDOS.INI and all bits are defined. Finally, see if LEARN.EXE can detect the packet structure.

I chose a VESA mode and I now get a blank screen

Wait a few seconds, and IntvDOS should revert back to your original screen mode (like Windows). If you changed cards or monitors or got the blank screen when starting IntvDOS, either delete INTVDOS.INI to force the standard 80x25 screen (do this as a last resort, since you’ll lose all of your controller mappings), or edit INTVDOS.INI and delete the SCREENMODEWIDTH, SCREENMODEHEIGHT, and SCREENMODEDEPTH entries from the [GENERAL] section. This will force INTVDOS to revert to the standard 80x25 text screen.

When I go to change the main screen mode, I don’t see any VESA modes available

Make sure that your video card supports VESA graphics modes. Some cards require that a TSR (terminate-and-stay-resident) program be loaded upon bootup before any VESA software will work. Check the software that came with your video card or with your manufacturer.

I want to use a 640-pixel-wide VESA mode but IntvDOS won’t let me

A standard 80x25 text screen is 720 pixels wide when using a 9x16-pixel font. IntvDOS’ main menu is designed to require at least 80 columns of text, and thus won’t let you use any VESA mode that is less than 720 pixels wide.

I want to use a really high-resolution screen mode that I know my card has, but it isn’t listed

Not all screen modes that your video card can do may be VESA modes. Even though IntvDOS has no upper limit on screen resolution, the “official” VESA standard stops at 1280x1024 pixels. I have seen cards with VESA modes at higher resolutions, but this is a matter that really depends on your card manufacturer and the choices they made when building VESA support into their product. I have heard of a product called Scitech Display Doctor that supposedly creates extra VESA modes; perhaps this might help.

Sound is garbled under Windows 95 or 98

This usually doesn’t happen anymore, but I have found that it can still arise for cards that use a driver to emulate Sound Blaster support. I just upgraded to a Creative Labs SB Live! card, and I’m profoundly disappointed to find that it isn’t 100% Sound Blaster compatible! It requires a DOS driver to emulate the Sound Blaster when in DOS mode, and an additional Windows driver as well. The only bulletproof solution I was able to find is either to “Restart in MS-DOS mode” or prevent the computer from booting to Windows (either by using the F8 key and selecting “Command prompt only” or using the Microsoft TweakUI PowerToy) and running the emulator in pure DOS. The problem apparently arises from interference between the native Windows driver and the SB emulation driver when in Windows, or perhaps from Windows giving the task not enough priority (i.e. CPU time) to adequately keep up with the sound card. Another possible solution is to set the “Idle Sensitivity” setting for the MS-DOS prompt to “Low” (see chapter 2 for details). Perhaps it’s a configuration issue, or a driver problem. I would appreciate it if someone can come up with a solution.

I have two Intv2PC hand controller interfaces and I want to try some four-player games, but I can’t find them

As far as I know, the only two games in existence that support four players are World Cup Soccer and Championship Tennis, both made by Nice Ideas. For them to run in four-player mode, they MUST be run as ECS games (i.e. hit the “E” key from the menu when running them). I haven’t played a full game with them in four-player mode, so I can’t guarantee how playable they are.

7 Acknowledgements

First and foremost, thanks go to the Blue Sky Rangers for developing the Intellivision software! Also for releasing the Intellvision Lives! CD, one of the coolest things I’ve seen on the emulator scene.

Joe Zbiciak and Frank Palazzolo: for reverse engineering the SP0256 and SPB640 chips used in the Intellivoice. Intellivoice support would have been impossible without their help.

Carl Mueller: for developing the first Intellivision emulator, the one that’s on the Intellivision Lives! CD.

William Moeller: for writing De Re Intellivision, which proved to be invaluable.

Everyone who has contributed to the Intellivision FAQ: technical information on the Intellivision has been VERY hard to find, making that which was available all the more precious.

Since much of IntvDOS is based on PCAE, the PCAE acknowledgements section follows.

Over the past few years while I have been developing PCAE, I have been lucky enough to receive a lot of help from some gracious people. This should in no way be considered an exhaustive list; I’ve gotten so much feedback over the past three years from so many people that I could never list everyone—my email folder simply isn’t that large, so if you aren’t included here, please don’t take any offense. I am grateful for all the assistance that has come my way.

Those who helped (not necessarily in any real order)

Matt Conte: First and foremost, for giving PCAE a home! Also for spreading the word, doing lots of beta testing, getting me info and tools I needed, fielding a lot of the email, and generally being really helpful.

Kevin Horton: Helped me with a lot of technical details of the 2600 especially bankswitching issues and Pitfall II deciphering. Also made sure I knew about every kind of bankswiching game he could get his hands on.

Norbert Juffa: Wrote the millisecond timer used in the fps limiting code.

Dan Melton: Wrote the keyboard interrupt service routine.

Ron Fries: Wrote the TIA sound routines and sent them to me.

Dan Boris: Introduced me to Ron Fries’ sound routines.

Dave W. (Dave’s Video Game Classics, now Vintage Gaming Network): Did lots of testing of PCAE, and supplied a whole bunch of good suggestions to make it better.

Jim Leonard: Provided lots more web space for PCAE, as well as did some very important testing of the final version. Also converted the documentation and schematics to HTML.

Bradford W. Mott and Keith Wilkins: For making available the source code to Stella, another really great 2600 emulator. This has not been an isolated project, and I’d be lying if I said that Stella wasn’t helpful. I certainly hope that PCAE’s source has been equally helpful.

Eckhard Stolberg: Provided me with a better PAL palette and provided additional information on the Cosmic Ark starfield bug.

John Saeger (author of Z26): Z26 has many of the same sound routines as PCAE, but I found that Z26 actually uses them properly—this made possible the smoother “click-less” sound in the current version.

Vojtech Pavlik (author of Linux joystick driver): for providing specs on SideWinder packets and how to read them.

Eric March: TESTING! TESTING! TESTING! One of the key reasons why PCAE is as good as it is; the list of bugs he identified is positively embarrassing.

Countless others: Many of the features PCAE has today came from people who emailed me with their suggestions. This document is a direct result of all the feedback I’ve gotten, and is my attempt at making things clearer for everyone.

8 Disclaimer

IntvDOS emulates a commercial game system for which copyrighted software was developed and still exists. The author of IntvDOS hereby forbids anyone to distribute IntvDOS in conjunction with any other copyrighted software. In addition, users of IntvDOS are specifically forbidden from using it in any way with copyrighted software for which they are not in legal ownership. IntvDOS should IN NO WAY be regarded as condonation of, or an excuse to commit, software piracy, and the author will not be held responsible for the actions of others.

In addition to the above, IntvDOS is covered by the GNU General Public License, which can be found in file “COPYING”.

Source code is available at http://www.geocities.com/dwarfaxe.

32

